
Student Learning & Licensure
API Instructions



Table of Contents
Basics 4

Things a SL&L API Developer Should Know 4

Testing and Go Live 4

Getting Started 6

Use Cases 6

Authorization of Requests Using OAuth 8

Create the Base String 9

Calculate the Signing Key 10

Calculate the Signature 11

Endpoints, the Request Body, Import Details and Responses 13

Endpoints 13

The Request Body 14

Import Details and Dependencies 14

Complete the Request 14

Server Responses, Errors and Result Logs 15

Successful Requests 15

Error Responses and Likely Causes 17

Request Result Logs 13

References and Sample Code 18

Making the Move to Production 20

Document Version History 21





Basics
The application programming interface (API) allows developers at member organizations to send data that is needed
by SL&L directly from their local systems. The data will be used to add user accounts, manage things like courses and
assignments, and bring in user profile information. This data helps programs power assessment and analyze the
results that SL&L helps to measure.

The API can reduce the need for manual adding of information or the use of spreadsheets to get the needed data into
SL&L, thus eliminating possible errors, decreasing manual tasks, and giving the user ability to determine how
frequently data is updated in the SL&L platform.

An organization’s API Developers can write applications to request that SL&L make a change to the data (such as add,
edit, or delete) using defined methods and parameters listed in this document, and SL&L will respond with the result.
The changes that are allowed and use cases for why an organization may want to use the API to make those changes
are also included in this document.

The developer can choose whatever language they want to use to connect with SL&L. However, Watermark has code
available for Perl and Ruby as a starting point.

Things a SL&L API Developer Should Know

The SL&L API developer must be familiar with authenticating requests of an API using OAuth signatures and
HMAC-SHA1. This developer must also be able to create a mechanism for extracting data from the local system(s),
transform it to the required, pre-defined format, and transmit it using the API information in this document. If your IT
team doesn’t have someone who can do this, you will use our manual data import to feed information into SL&L.

The transmission process will involve creating a secure connection between the local systems and SL&L. This will
require familiarity with authenticating requests of an API using OAuth signatures and HMAC-SHA1.

This mechanism should be run on a regular basis, so the developer will need to consider how they will access local
resources capable of connecting to the SL&L API. This may involve scheduling the task or responding to local user
operations and generating the API request, depending on the use case.

Testing and Go Live

This documentation will list endpoints and URLs associated with a non-production environment,
https://sll-testing.watermarkinsights.com. When appropriate, production endpoints and URLs will be provided by the
implementation team.

The test instance is not connected to a production database, so API developers can use it to test scripts and make
sample requests of the API that will not affect production data. The non-production environment is good for testing



scripts or creating and modifying sample records to confirm results in the interface, but none of the changes are
permanent or will inform production data in any way.



Data rate limits and processing capabilities in testing are limited compared to the production environment, so it is not
recommended for large import tests or load testing. Request rate limits, the maximum number of records per request,
and other questions about capacity can be discussed with the implementation technical team.

Getting Started

To help you get started, your Implementation Team will:

● Discuss the planned usages by the colleges, departments and programs and present recommendations on
the information to be included in the API integration

● Provide a non-production SL&L environment for testing

● Demonstrate SL&L functions and explain data dependencies and requirements

Use Cases

The SL&L API offers endpoints to allow administrators to push data into the application from a variety of sources and
use it to inform and power the experiences of their users. These endpoints let administrators create accounts, manage
courses and groups, update enrollments, and populate user profile information for reporting. Below are descriptions of
some common use cases and what API interactions are required to support them, so API Developers know where to
start when coding for colleges, departments, or programs who will be using SL&L.

User Creation

Using the API, member accounts are mass created in SL&L based on information from some campus information
system (e.g. Student Information System, Active Directory, or other databases) in a batch operation by sending an
array of records.

Relevant endpoint: POST /api/memberships/users

Some administrators want user accounts created ad hoc. Using the API, a post creates a single account in response to
the submission of a local form, an order completed by the university, or another system event such as workshop
registration or program enrollment.



Relevant endpoint: POST /api/memberships/users

Profile Updates

Add student data like Major, Academic Program, and test scores stored in other systems to the user profile information
in SL&L to be used to disaggregate and aggregate assessment and standards-based reports.

Relevant endpoint: POST /api/memberships/users

Hierarchy definition from an external system

Use data from other systems that contain organizational charts or hierarchy structures to inform structure in SL&L.

Relevant endpoint: POST /api/memberships/hierarchy

User Academic Data/Term Based Data from SIS Term Creation

Create new terms or update existing terms that can then be aligned with groups or used to add academic data for
students.

Relevant endpoints: POST /api/memberships/terms

Course Shells synced from LMS

When new courses are added and records for them are created in the SIS or the LMS, add them as a “Group
Template” to SL&L at the appropriate level in the hierarchy. This will allow the course to have SL&L measurement tools
available and ensure that college, department or program administration have correct administrator access to manage
their use.

Relevant endpoints:

● POST /api/memberships/hierarchy

● POST /api/memberships/group_templates

Courses, Internships or Cohort Groups from SIS or other source data



Feed course sections, internships or cohort groups to SL&L from other campus systems, like the SIS, LMS or
Internship or Cohort management systems. Instances of these courses or groups are connected to the group template
to apply pre-set system permissions and resources.

Relevant endpoints:

● POST /api/memberships/group_templates

● POST /api/memberships/groups

Roster Management and Enrollment Data from SIS

Add or drop users from groups using API posts.

Relevant endpoints:

● POST /api/memberships/users

● POST /api/memberships/groups

● POST /api/memberships/group_memberships

User Academic Data/Term Based Data from SIS

Add student academic data like Cumulative GPA, Term GPA, Attending Status, Primary Major, Primary Major
Concentration, Additional Major, Additional Major Concentration, Minor, and Earned Credit Hours stored in other
systems to the user profile information in SL&L to be used to disaggregate and aggregate assessment and
standards-based reports for specific terms.

Relevant endpoints:

POST /api/memberships/academic_data

NOTE: Relevant users and terms need to exist in the system to import academic data.

Relevant endpoints to add users and terms are:

POST /api/memberships/users POST /api/memberships/terms

Authorization of Requests Using OAuth



To ensure that the request is secure and that only the organization’s own application is allowed to make changes in
SL&L, requests are all signed using OAuth 1.0a as the authentication mechanism.

An article on the details of the OAuth mechanism is available here:

https://oauth.net/core/1.0a/

The OAuth Key and OAuth secret that are generated in the SL&L admin’s account are used in the signature. The
OAuth key must be included in each request. Please note that these values are sensitive and should never be shared
with anyone.

1. Go to https://sll-testing.watermarkinsights.com.

2. Log in with your email/password.

3. Click on Settings.

4. Click the OAuth Configuration tab.

Every OAuth parameter needs to be included in the signature. Below are the parameters and examples for authorizing
a request. These example parameters should only be used to verify the developer’s own code produces properly
formatted strings and a correct signature. The example keys, secrets and signatures in this document will not be
accepted by the SL&L application servers and are included here for illustrative purposes. The proper key, secret, and
parameters must be generated by the local application for the testing or production environments.

HTTP Method POST

URL https://sll-testing.watermarkinsights.com/api/memberships/
users

oauth_consumer_key SBIJQWSNRTNATLY4RADYNRCDNLE

oauth_nonce sDULoQDmaw

oauth_signature_method HMAC-SHA1

oauth_timestamp 1475077240

oauth_version 1.0a

https://oauth.net/core/1.0a/


Create the Base String

The Signature Base String is a concatenation of the HTTP method, base URL (which is discussed later in this guide),
and parameter strings into a single string. To do this:

1. Convert the HTTP method (post) to uppercase.

2. Append the ‘&’ character to the string.

3. Percent-encode the URL and append it to the string.

4. Append the ‘&’ character to the string.

5. Sort parameters by name and percent-encode the parameter string and append it to the string.

For example, when creating the base string for a user creation request with the OAuth parameters above, it will
produce the following:

POST&https%3A%2F%2Fsll-testing.watermarkinsights.com%2Fapi%2Fmemberships%2Fuser
s&oauth_consumer_key%3DSBIJQWSNRTNATLY4RADYNRCDNLE%26oauth_nonce%3DsD
ULoQDmaw%26oauth_signature_method%3DHMAC-SHA1%26oauth_timestamp%3D147
5077240%26oauth_version%3D1.0a

The request will include JSON as the body, but that data should not be included in the base string.

Calculate the Signing Key

The base string and signing key are fed into the HMAC-SHA1 algorithm to generate the signature, which is discussed
in the next section.

Since SL&L does not use access tokens, the signing key will only consist of the percent-encoded consumer secret,
which is generated on the same page in SL&L as the Consumer Key. Use that percent-encoded string, followed by an
ampersand character (&):

O25WUE8REKJPSVU8WMNRXMAVGYHWX1LQ7TMVDB_A-WXUNL2E9NKP8Q&

It is very important to keep this value private to your application. If you think your values have been compromised,
regenerate your tokens. To regenerate your tokens, go to your OAuth Configuration settings page, click Edit, and
then click Regenerate Configuration.



The example above is a simple string for illustrative purposes, but always percent-encode and append the ampersand
character in the local application as the secret that SL&L generates will be unique and may include characters that
require encoding.

Calculate the Signature

The signature is calculated by passing the Signature Base String and Signing Key to the HMAC-SHA1 hashing
algorithm. There are implementations of HMAC-SHA1 available for every popular language. It is highly recommended
to use an existing library to handle the hashing even if the code to write the signature is created from scratch.

An example that uses an existing library in Ruby is shown below.

The algorithm is explained in depth here:

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

The output of the HMAC signing function is a binary string. This needs to be base64 encoded to produce the signature
string. That value, when converted to base64, is the OAuth signature for this request. For example, when creating the
signature for a user creation request with the OAuth parameters above, it will produce the following:

OAuth Signature: Gtm%2B8MA216hb8AdKrCGikSTeOf4%3D

The resulting request header, when put together, appears below. Note that all of the parameters (except the secret) are
included in the request header and the calculated signature is sent.

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Base64




Endpoints, the Request Body, Import Details and Responses

Each import has a unique URL and endpoint that needs to be used when making a request. The URL used in the base
string will need to include the endpoint.

The base URL in this document refers to a non-production test instance, as mentioned previously.

https://sll-testing.watermarkinsights.com

This URL should be used for testing. The production host URL will have been provided to you at the outset of
implementation. The application domain is the same (https://sll.watermarkinsights.com) but the subdomain value will be
different.

Endpoints

Usage HTTP

Method

Endpoint

User Creation and Profile Updates POST /api/memberships/users

Create University / Organizational

Hierarchy

POST /api/memberships/hierarchy

Add New Group Templates / Course Shells POST /api/memberships/group_templates

Create a Group Instance / Course Section POST /api/memberships/groups

Manage Group Membership / Enrollments POST /api/memberships/group_memberships

Manage Term Creation POST /api/memberships/terms

Manage User Academic Data POST api/memberships/academic_data



The Request Body

The Request Body contains the data import fields. This data must be in JSON format. It can include multiple items as
an array. Here is an example of the Request Body, with the required parameters for a single user import:

Import Details and Dependencies

Each of the imports has documents which cover the required and optional fields, acceptable data types and character
limits, and contain examples of the data SL&L can process. The requirements for the API are the same as when using
the CSV import tool in the admin account or creating the items manually in the admin interface.

Refer to the following documents, which list those requirements:

User Import Spec Hierarchy Spec

Course Import Spec Course Section Spec Memberships Import Spec

Academic Import Data Spec Terms Import Spec

Complete the Request

A complete and properly formatted user creation request using the parameters and values above would look like this:

https://support.watermarkinsights.com/hc/en-us/articles/4414776250523-User-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414783593115-Hierarchy-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414783589915-Course-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414783594139-Sections-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414776253595-Membership-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414776251675-Academic-Data-Import
https://support.watermarkinsights.com/hc/en-us/articles/4414774122267-Terms-Import


Server Responses, Errors and Result Logs

Requests will have an immediate response from the SL&L application in the form of a server response code that has
basic information about if the request was fulfilled. Further information, like the details of the changes made as a result
of the request, are available by logging in to the admin account.

Successful Requests

A successful POST request will return an HTTP (status code 200 OK) and response information in JSON format. This
is a response from the API that the connection was established, the request was received, and that it was processed
as expected. A summary of the resulting data changes in SL&L must be accessed through the admin account
interface, which is discussed later in this guide. The request above would result in an HTTP status 200 OK and the
following as the body in JSON:



Here are the individual response details:

FIELD VALUE DESCRIPTION

id 5888f2d394413817980004e8 The unique ID of the API import request.

enrollment_targe t users The API import request endpoint.

created_at 2017-01-25T18:47:47.885Z Timestamp of when the import started.

status created The current status of the import request. This
should always be “created”.

updated_at 2017-01-25T18:47:47.885Z Same as created_at

credential_key SBIJQWSNRTNATLY4RADYNRCDNL E OAuth Consumer Key used by the request.



Error Responses and Likely Causes

While not exhaustive, some common error responses and possible causes are listed below.

Server error responses are not logged in the organization’s SL&L admin account because they generally represent a
failure to connect to the specific organization’s endpoint and cannot be associated with the application making the
request. Developers should consider logging server responses in their application for debugging purposes.

Error 404 - Not Found

This is a client error (caused by a problem with the organization’s application that is making the request) that is
generally accompanied by a JSON response in the body which states:

The most likely cause for this error is that the host URL or endpoint is incorrect. To resolve this, confirm the correct
endpoint is being used from the table above and check with the Implementation Technical Team to confirm the host
URL is correct for the SL&L test or production environment to which the organization’s application is trying to connect.

It may also be because the consumer key is wrong. SL&L identifies which organization and what application is making
the request using the consumer key. If an application sends a key that is not recognized, SL&L does not have a valid
endpoint for the organization, so it will return the “resource not found” error as a response to the request.

Error 401 - Unauthorized

This is another client error, generally accompanied by a JSON response in the body that states:

This error is most common because the consumer secret is wrong. Log in to the admin account and confirm the
consumer secret is accurate.

Another common reason for this error is that the base string is not calculated correctly. If this happens, when the base
string and key are passed through the HMAC-SHA1 algorithm and the result is different from what SL&L calculated, the
connection is rejected. The key is probably correct, otherwise, an “Error 404 - Not Found” would have been received as
noted above, so the base string is probably the cause. Refer to the section earlier in this guide on calculating the base
string and make sure to use an existing HMAC-SHA1 library for hashing.

Error 500 - Internal Server Error



This is a generic server error message from the SL&L application side which indicates the problem likely exists on that
end. Most likely this was a temporary condition and retrying the request will be successful. If not, please note details
about the request, such as the environment (testing or production), the time and date, the endpoint, and general
information about the data changes that were requested and send that to support@watermarkinsights.com so they can
look into it and determine next steps.

Request Result Logs

To find the results of the API import request, log into SL&L and go to the following URL (non-production):

https://sll-testing.watermarkinsights.com/import#/import/users

The results information includes the following:

TEXT SAMPLE VALUE DESCRIPTION

Import Date 03/18/2018 Date of import request

Import By API The method used to import the data. For API requests this will be
“API”. Manual imports will have the username of the individual who
performed the operation

mailto:support@watermarkinsights.com


Import Status 0 import successfully, 1 failed. This will list how many records were successfully imported and how
many failed.

Data Source link A link to the import request data. (JSON or CSV)

Failed
Information

Line Number: 1 User ID:

Reasons:

1. Username: can't be blank

2. Email: is already taken

3. Password: can't be blank

This field only displays if at least one row failed. It gives relevant
information about which row failed and the reason(s).



Sample Code

Watermark can provide sample code in Perl and Ruby as a starting point for development.

Making the Move to Production

When testing is complete, the developer will need to change the host URL and update the Consumer Key and Secret
using values generated in the production application.

In SL&L, only the subdomain is different, and the production subdomain will have been provided to you at the outset of
implementation.

Keep in mind that the calculation of the base string and the headers of the request need to include the host URL, so it
is important to note that the URL subdomain is different on production from the host used in testing. When moving to
production, the API developer will need to change the Host as well as the key and secret. If all three items are not
updated correctly, the likely result will be a 404 error as mentioned previously in this document.



Document Version History

Version Date Description

1.0.2017.1 1/15/2017 Initial Version

1.1.2018.2 2/27/2018 Edited content
Changed document title
Fixed typos in URL, base string URL and example signature that would result in errors when
deployed

Updated layout, colors, brand and copyright information

2.0.2018.3 3/19/2018 Restructured and added content
● Use Cases
● Things an API Developer should know
● Server responses, errors and result logs
● Testing and Production Go Live

Eliminated duplication, consolidated documents, removed redundant and confusing parameter
examples and tables.

2.0.2018.4 4/20/2018 Edited content
● Added external reference links for HMAC-SHA1 and OAuth 1.0a
● Updated support resources
● Updated Implementation Services details

2.0.2020.5 2/8/2021 Edited content
● Added Term Creation/Academic Data endpoint
● Updated SL&L Testing URLs

2.0.2022.6 3/1/2022 Edited content
● Updated the product name

2.0.2022.7 6/16/2022 Edited content
● Update the URLs from vialivetext.com to sll.watermarkinsights.com


